
Teaching the Go1 Robot to Walk
Reinforcement Learning Project

Stefan Lechner, Dario Spoljaric, Zoltán Varga, Benedikt Frey
{e01608096, e11806417, e11823287, e12230445}@student.tuwien.ac.at

Abstract—This paper explores the application of reinforcement
learning (RL) to teach the Unitree Go1 robot to walk in the Multi-
Joint Dynamics with Contact (MuJoCo) framework. The study
focuses on comparing different neural network architectures,
including Multilayer Perceptron (MLP) and Long Short-Term
Memory (LSTM), as well as evaluating the impact of Proximal
Policy Optimization (PPO) with Prioritized Experience Replay
(PER) and varying reward functions. The results show that a PPO
implementation with a PER replay buffer and an MLP neural
network with four layers achieves optimal convergence. The study
contributes to our understanding of effective RL approaches for
robotic locomotion.

Index Terms—Reinforcement Learning, Proximal Policy Opti-
mization, Prioritized Experience Replay, Long Short-Term Mem-
ory, Locomotion, Robot Learning

I. INTRODUCTION

In the pursuit of stabilising complex systems, e.g. robotic
dogs, classical control theories reach their limits quickly. To
precisely tune a PID or LQG controller for each joint to
walk, a thorough understanding of the system is necessary to
ensure smooth interaction between components. A different
way of solving this problem is to simulate every possible
system interaction with its environment and observe what
works best. This procedure is called reinforcement learning
(RL). It requires a significant amount of computational power,
nonetheless, it is becoming an increasingly popular solution
thanks to recent advances in affordable and powerful computer
components. The key advantage of RL is that it is often
easier to model the interaction between the system and the
environment than to model the entire system on its own,
allowing for more efficient optimisation of the system’s be-
haviour. However, this approach also presents its own set of
challenges, such as the risk of getting stuck in local optima,
the need for a large amount of data to train the model, and
the difficulty in ensuring safety and robustness in the learned
behaviour, especially in real-world applications with complex
and dynamic environments.

RL is a type of machine learning that enables an agent to
learn optimal policies through trial-and-error interactions with
an environment [1]. Figure 1 illustrates the basic idea behind
the environment feedback loop.

Fig. 1. Reinforcement Learning Feedback Loop

An agent selects an action at based on its current state st
and receives positive or negative rewards rt from the envi-
ronment as feedback. The observation ωt the agent receives
captures the state change that occurs when performing an
action. The agent’s objective is to learn a policy that maximises
the cumulative reward over time. This is achieved by iteratively
updating the policy based on the feedback received from the
environment, allowing the agent to improve its performance
and make better decisions over time. The goal is to find an
optimal policy that balances the trade-off between exploration
and exploitation.

II. RELATED WORK

There are two main types of RL algorithms. A value-based
and a policy-based strategy [2]. The former calculates so-
called q values, which define a value for a chosen action a in
a state s. To maximise the rewards over time, the q function
gets calculated at every time step. Through iterative execution,
the agent implicitly learns the optimal policy π(s) for each
state. The policy-based method does not directly calculate an
optimal action but follows a predefined policy πθ(at | st)
and a policy objective function J(θ). The objective function
is defined as the sum over all time steps t of all expected,
discounted rewards if the strategy πθ(at | st) is followed. The
aim is to maximise the rewards. This is done by adjusting
the policy through gradient descent. Both methods have some
advantages and some problems.

The solution for more optimal performance is a compro-
mise between value-based and strategy-based approaches. This
method is known as the actor-critic method. Here, the ”Actor”
selects an action according to a certain strategy. This strategy is
defined by a policy-based method. The ”Critic” is implemented

as a value-based method that evaluates the action of the actor.
To put this into equations, an advantage function is defined.

A(s, a) = Q(s, a)− V (s), (1)

This function states how much better or worse the reward
for a particular action is than the average reward for an action
in this state. A new gradient of the goal function can then be
defined (2).

g = Et [∇θ log πθ(at | st)A(st, at)] , (2)

The value function is weighted higher if there is a large
positive or negative advantage and weighted lower if a smaller
advantage has been calculated. The Critic therefore ”evaluates”
the action of the actor. The actor-critic approach combines the
advantages of both methods. High sampling efficiency and low
variance, similar to the value-based approach. In addition, the
method can also be applied in time-continuous environments
in the same way as in policy-based approaches.

A. Proximal Policy Optimization

To begin with, it is important to acknowledge that opti-
mizing multiple steps simultaneously can lead to significant
strategy updates. While this approach can be effective in
certain situations, it also has its drawbacks. Specifically, if
several optimization steps are carried out at once, it can result
in major strategy updates that can have a destructive effect
on the learning process. To address this issue, the Proximal
Policy Optimization (PPO) approach has been proposed [3].
To understand PPO, it is important to first examine the Trust
Region Policy Optimization (TRPO [4]) approach. As the
name implies, a ”trust region” is calculated, which limits the
size of the policy updates depending on how big the trust
region is. This approach achieves very good performance but
is complex to implement and requires many estimators or
high computing power. To simplify this approach and achieve
similar performance, the PPO approach is introduced. First, the
likelihood ratio between the current strategy and the previous
strategy is defined (3).

r(θ) =
πθ(at | st)
πθold(at | st)

, (3)

This ratio replaces the old score function (2), while the
advantage function is retained. Finally, the new method should
also limit strategy updates. To this end, the ratio is clipped
as soon as it is outside a defined interval. This removes the
incentive to change the strategy too much. The new function
is also known as the surrogate objective function.

LCLIP(θ) = Et [min (r(θ) ·At, clip(r(θ), 1− ϵ, 1 + ϵ) ·At)] ,
(4)

In the surrogate objective function, the smaller of the two
terms is chosen to estimate the expected value. This means
that negative policy changes are still taken into account while
positive changes outside the interval are cut off.

Proximal Policy Optimization is one of the most widely
used approaches in the field of reinforcement learning [5], as
the approach delivers comparable performance to TRPO but
is much easier to implement [3].

B. Prioritized Experience Replay

Schaul et. al [6] introduced Prioritised Experience Replay
(PER) to optimise the use of saved experiences in the replay
memory. In temporal-difference (TD) problems, which include
RL problems, experiences are saved and used to improve the
strategy. The saved experiences are sampled uniformly for the
learning process. In PER, as the name suggests, important
experiences get prioritised. The equation (5) describes with
which probability the i-th experience is sampled for the replay
storage. Where α specifies how much prioritisation is used.

Psample(i) =
pαi∑
k p

α
k

(5)

The priority pi of the i-th experience is calculated from the
absolute temporal-difference error, which means cases with
a high impact, positive or negative impact the priority most.
In the case of a PPO implementation, TD error is calculated
as the advantage function, so the priority of an experience is
defined pi = |Ai| + ϵ, with ϵ a small factor to prevent edge-
cases, where pi = 0. This prioritised sampling introduces bias,
which uncontrollably influences the stochastic distribution. To
correct this problem weights are introduced (6).

wi =

(
1

N
· 1

Psample(i)

)β

(6)

Where N is the total number of experiences in the replay
buffer.

The prioritised sampling is fully compensated for β = 1.
Schaul et. al ”hypothesise that a small bias can be ignored in
this context” [6] and suggest β-annealing. A process in which
β increases over time and only reaches 1 at the end of the
learning process. The calculated weights can be directly used
in the Q-Learning process by weighting the TD-error wiAi

while updating the loss function.
The authors show that the PER approach outperforms a

traditional Deep-Q-Network for various problems.

C. Long Short-Term Memory

If we consider nature’s way of quadrupedal movement as
the golden standard, one can immediately notice a periodic
pattern in the movement of humans and animals. To make use
of this time dependency and translate it to neural networks,
it might be useful to have some sort of embedded memory
block. There are various types of Recurrent Neural Networks
of which we have chosen the Long Short-Term Memory model
(LSTM) due to its simplicity.

The LSTM [7] provides a simple and computationally
efficient way of dealing with time-variance. It retains the last
couple of steps as long as the model determines it to be
relevant. In each recurrence, it re-considers which information
to keep and which to forget. The newly calculated state of the

cell is saved for the next iteration and reset at the beginning
of a new run.

LSTMs have been known to perform well in some reinforce-
ment learning tasks [8] including motion planning [9] as well.
In this particular task, there is no long-term time dependency,
only a short periodic pattern. We expect the model to recognise
this periodicity and help the agent to achieve an animal-like
movement quicker than traditional dense neural networks.

III. METHOD

This chapter briefly describes the method used in this
project. The environment in which the robot interacts is
explained, as well as the agents and the reward structure.
Defining all elements of the reinforcement learning structure
is shown in figure 1.

A. Environment

The Multi-Joint Dynamics with Contact (MuJoCo) frame-
work [10] is a general-purpose physics engine that is used, for
example in the field of robotics, biomechanics and machine
learning. MuJoCo is a highly optimised simulation environ-
ment that offers numerous solver parameters. This allows users
to adjust and adapt to any model [11]. The model can be
created using a MuJoCo native XML format. This project uses
a URDF model of the Unitree Go1 robot [12] that is loaded
into a bare environment with just a floor to walk on. The
MuJoCo engine gives the user access to the joint position and
joint velocity, as well as other robot hyperparameters, such
as stiffness or damping. The action space for this project is
defined as the vector of all joint positions, meaning the actor
can set the rotation angle for all 12 joints of the Go1 robot.
The observation space – additionally to the joint positions
– includes joint velocity as well. In order to speed up the
learning process we limited the action space of the abduction,
hip and knee to be in the ranges specified in table II (in the
appendix). In MuJoCo there are different types of actuators,
we used position-driven actuators which use PD controllers
to calculate the torque applied to the motors. The controller
parameters have been set in the XML file for abduction, hip
and knee independently and according to the previous work
[13].

B. Agent

The agent is implemented as an Actor-Critic model. The
PPO approach and the addition of the PER buffer are already
explained in the Related Work section. Additionally, the ad-
vantages of the PPO implementation were calculated using
the Generalized Advantage Estimation (GAE) method [14].
GAE is used to reduce variance in calculating the advantage
estimation. Also, as found in other implementations [15]
gradient clipping to limit the policy updates and Kullback-
Leibler (KL) divergence to dynamically adjust the learning rate
were implemented. KL divergence ”quantifies the proximity of
two probability distributions” [16]. This idea can be used to
increase the learning rate for a higher divergence and reduce

it if the divergence between the old policy and the new policy
is small.

During the course of this project, different implementations
for the actor-critic agent were tested. The results of the
different approaches were documented and are presented in
the next chapter.

C. Reward

Reward engineering is an important and very time-
consuming part of the reinforcement learning process. The
agent inherently learns to maximise rewards by optimising the
loss function. In our study, we adopt reward functions similar
to those employed in previous works, such as [17], [18], [19],
[20], and [21]. The baseline rewards used in our project are
outlined in Table I. Specifically, we set the command for
angular velocity ωcmdz to 0.0 and for linear velocity vcmdx

to 0.5.

TABLE I
BASELINE REWARDS

Reward Equation ri Weight wi

Lin. velocity tracking e−4(vcmdx−vx)2 30.0

Ang. velocity tracking e−4(ωcmdz−ωyaw)2 5.0
Linear velocity (z) vz2 -2.0

Orientation θ2 + ψ2 + ϕ2 -50.0
Feet up reward (pz,k − pfz,k)

2vfxy,k -10
Action rate (at − at−1)2 -0.01

On track reward x · e−||y−ydes|| 10.0

Termination penalty


1, 0.5 < z < 0.2

1, |ϕ|/|ψ|/|θ| > π
3

1, |y| > 0.3

1, x < −0.3

-20

The total reward is then computed by

rt =

n∑
i=1

ri · wi (7)

These rewards I are common in the locomotion terrain [17]
[18] and will serve as the foundation for analysis of our learn-
ing algorithms in the following sections. To mitigate velocity
or coordinate drift from a desired but static target, squared
error metrics are employed, as we did in the z-direction
velocity and orientation rewards. Exponential functions, as can
be seen in the tracking rewards, are employed to follow a given
command, which is sampled throughout the training process.
In that way the robot not only learns to follow one specific
target but an arbitrary one. In our case, this command is just
a simple forward velocity. We even designed several reward
functions ourselves, one that proved to accelerate learning was
the ”on track reward” which leads the robot to maximise its
x-component while maintaining a small y-component. More
reward functions have been tested and the results will be shown
in the next chapter.

IV. EVALUATION

A. Actor-Critic Implementation Comparisons

In this section, we will dive into the differences in the total
reward and loss metric by comparing the baseline code, the
PPO and the PPO with PER implementation. The baseline
implementation uses a standard replay buffer and calculates
rewards in a straightforward manner. It was made available to
us as a starting ground. Specifically, it calculates the temporal
difference by combining the current rewards at a given step
with the product of a boolean condition, the discount factor,
and the subsequent values. It then assigns this delta to the
advantages array at the specified step and computes the returns
by adding the advantages and the current values. The other
methods were already explained in the beginner sections of
this paper.

We begin with analysing our best implementation of PPO +
PER against the baseline implementation. Since the baseline
does not produce any meaningful loss, the comparison is based
on the maximised total reward, as shown in Figure 2. For
each run, we trained the robot for 700 epochs. While the
reward of our implementation is rising consistently the reward
of the baseline is collapsing and does not improve in the
slightest. This is also confirmed by the visualisation of the
robot where PPO + PER learned a walking motion and the
baseline implementation did not.

Fig. 2. PPO/PER against Baseline Implementation

Second, we need to understand if the PPO implementation
on its own would have been enough to teach a robotic dog
a walking motion. For this, we changed the alpha value of
the PER implementation where 0 is purely random and 1
leads to strict selection of what is stored in the replay buffer.
Instances of 0, 0.6, and 1 as alpha values are depicted in
Figure 3 showing the loss of our actor and value networks.
The idea behind a loss plot is that the loss should converge
to zero because it indicates how well the network reduces
the gradient. After analysing the blue lines from the PPO-
only implementation, we noticed that the value loss remains

stagnant, and the actor loss, which initially moves towards
zero, starts increasing again. This indicates that there is a
problem with the learning process. On the other hand the
actor and value loss from the 0.6 and 1 alpha implementation
converge towards zero. One exception is the actor loss of
PER with alpha set to 1 which rises slightly again from
epoch 350 on, underscoring that our best implementation is
with alpha as 0.6. Interestingly all implementations lead to a
walking robotic dog. There is only a difference if one looks
at each reward individually. The PPO/PER implementation
learns them faster than the implementation without the PER
code. This was expected and we can say with confidence that
the PER implementation chooses instances of high learning
possibilities.

Fig. 3. PPO/PER change of alpha value (randomness)

B. Comparing Neural Network Implementations

To find the best network for the specified problem, we
have tested two different architectures with varying depth. The
first approach was a Multilayer Perceptron consisting of 3 to
5 layers, the second one was an Long Short-Term Memory
module with a dense projection layer at the end and two before
the memory cell to prepare the feature vectors. Both models
had a hidden dimension size of 512.

After training the model for at least 700 epochs, it was tested
in the MuJoCo environment to see how many epochs it needs
to learn progressing forward and to follow the path given in
the reward functions. The training was performed using an
Adam optimiser with a learning rate of 0.001. Further details
about the RL agent is described in III.

The comparison is based on three metrics. Figure 4 shows
the number of epochs needed to achieve a desired movement.
The first time the robot has left the starting position was noted
in each training phase. To make the comparison more accurate,
a second metric was introduced. This denotes the first epoch
where the robot has progressed forward without falling or
rotating to the side for at least a couple blocks in the simulation
environment. The third comparison metric is an evaluation of

the environment’s mean total reward of the last ten epochs
(690–700). For detailed results see Figure 5.

Out of the different MLP settings, the one with 4 layers
came out as the best model according to two of the three
metrics. This was then compared to the LSTM as actor and
as critic in separate tests. We have found out that the LSTM
does not work as actor — the robot could not move at all,
even after 700 epochs. MLP as critic could make the robot
walk, although it performed slightly worse than the approaches
using MLP only. This contradicts our expectations regarding
RNNs in Reinforcement Learning. The reason behind it may
be that LSTM’s memory range was too long and it therefore
could not improve the RL agent’s ability to achieve a smooth
and periodic movement. Another reason might be that the
environment’s rewards were tuned using an MLP and then
switched to LSTM without defining other reward functions
that could be more compatible with an RNN-based critic.

Fig. 4. Comparison of different neural networks as actor and as critic

Fig. 5. Comparison of different neural networks based on the achieved reward

The loss functions for the MLP and LSTM implementation
look very similar 11, 12 (in the appendix). LSTM seems to
converge slightly stricter towards zero, but the difference is
small.

C. Evaluating the reward functions

For this section, the findings of previous sections will be
used. These suggest that an MLP with four layers in total, cou-
pled with PER incorporating the setting of α = 0.6, exhibits
optimal convergence for both value and actor loss. The goal
of this project is a walking robot that is able to hold a straight
line. To show the effectiveness of our optimised rewards, we
compare our baseline I and our modified version of the Mu-
JoCo tutorial [22] against DreamWaQ [17]. Adjustments were
made to the weighting of MuJoCo tutorial rewards and one
slight change to the DreamWaQ rewards, as outlined in Tables
IV and III. However, the weighting of DreamWaQ overall was
kept the same. The comparison of total rewards, illustrated in
Figure 6, reveals that both the default implementation and the
MuJoCo tutorial implementation outperform DreamWaQ.

The most interesting reward in our regard is the ”linear
velocity tracking” reward, as it is most representative of the
success of the model. A closer examination of the reward
composition (Figures 8, 9, and 10 in the appendix) reveals that
the reward consistently increases for ”default” and ”mujoco”
throughout the training process, making them outperform
”DreamWaQ”. While one might argue that this discrepancy
is attributed to the reward weighting – with ”default” and
”mujoco” implementations placing more emphasis on linear
velocity and termination, for example – the results speak for
themselves.

Fig. 6. Comparison of rewards

Notably, after 700 epochs, the Go1 robot demonstrates suc-
cessful walking with both the default and MuJoCo implemen-
tations. In contrast, the DreamWaQ implementation fails to
achieve walking even after 1000 epochs. This underscores the
importance of weighting and shows the superior performance
of our and MuJoCo’s implementation.

D. Batch fitting

In the final step, we experimented with the batch size for the
replay buffer. The number of experiences in the replay buffer

(batch size) is determined by the number of time steps per
epoch that were used and the predefined number of batches.

batchsize =
Ntimesteps

Nbatches
(8)

Figure 13 (appendix) shows the rewards gained for different
batch sizes. This suggests that as the number of time steps and
batch size increase, the accumulated rewards also increase. But
in our experience this correlation is limited.

In Figure 7, we depict the cumulative rewards over a
consistent number of time steps (Ntimesteps = 1000). Above
all, the highest cumulative rewards are achieved with the
largest batch size (500) for a batch count of 2. However, it is
essential to highlight that the performance drops significantly
for the next largest batch size (5 batches), performing much
worse compared to smaller batch sizes (achived with 10 and
20 batches).

Fig. 7. Rewards for varying number of batches

This indicates that there is not a direct correlation for batch
size to performance but rather a sweet spot. In our case this
spot was found to be at size 500 which relates to a time of 20
seconds in simulation.

To yield optimal training in the future the batch size will
be varied to find the optimal solution for the problem.

V. DISCUSSION

In this paper, we demonstrated the process of teaching the
Unitree Go1 robot a walking motion in a MuJoCo simulation
environment. The robot learned a straightforward motion after
less than 600 episodes for a PPO implementation with a PER
replay buffer and 4 total layers (2 hidden layers). We also
looked at an LSTM method for the neural network imple-
mentation of the Actor-Critic implementation. Interestingly,
the LSTM implementation led to slightly better convergence
of the loss function, which did not translate to the learning
process or the accumulated rewards and varying results for
the same implementation. This also coincides with the findings

of researchers, suggesting that deep RL methods are unreli-
able across runs, hard to reproduce and can be brittle [23].
We also examined different reward functions. The MuJoCo
implementation augmented with our own reward functions
led to the smoothest walking motion in the simulation. The
walking motion is already massively improved in comparison
to previous implementations. The total rewards 6 showed
further learning progress even after 600 epochs meanwhile
DreamWaQ stagnated.

In future work, we would like to improve the walking
motion. The goal is a more ”animal-like walk” or a jumping
motion. There are already different implementations that show
promising results. We could achieve that by randomisation of
walking commands as it was done in [22] so the network
learns to follow these instead of just one behaviour. Another
exciting aspect in terms of reward engineering are potential-
based rewards [24] which mitigate a more generalizable and
natural walking behaviour to the network. Further parallelised
learning as mentioned in [20] and [25] could further stabilise
the learning process and lead to a much better explored
environment. We also worked on the environment to create
a more realistic one with stairs (14) or other obstacles from
STL files (15). The goal is to have a robot that can manage
different terrain and navigate a planned path.

REFERENCES

[1] K. Arulkumaran, M. P. Deisenroth, M. Brundage, and A. A. Bharath,
“A brief survey of deep reinforcement learning,” arXiv preprint
arXiv:1708.05866, 2017.

[2] D. Silver, “Lectures on reinforcement learning,” URL: https://www.
davidsilver.uk/teaching/, 2015.

[3] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov,
“Proximal policy optimization algorithms,” 2017.

[4] J. Schulman, S. Levine, P. Moritz, M. I. Jordan, and P. Abbeel, “Trust
region policy optimization,” 2017.

[5] Y. Wang, H. He, and X. Tan, “Truly proximal policy optimization,” in
Uncertainty in Artificial Intelligence. PMLR, 2020, pp. 113–122.

[6] T. Schaul, J. Quan, I. Antonoglou, and D. Silver, “Prioritized experience
replay,” 2016.

[7] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
computation, vol. 9, pp. 1735–1780, 1997.

[8] B. Bakker, “Reinforcement learning with long short-term memory,”
in Advances in Neural Information Processing Systems, T. Dietterich,
S. Becker, and Z. Ghahramani, Eds., vol. 14. MIT Press,
2001. [Online]. Available: https://proceedings.neurips.cc/paper files/
paper/2001/file/a38b16173474ba8b1a95bcbc30d3b8a5-Paper.pdf

[9] M. Everett, Y. F. Chen, and J. P. How, “Motion planning among dynamic,
decision-making agents with deep reinforcement learning,” in 2018
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), 2018, pp. 3052–3059.

[10] E. Todorov, T. Erez, and Y. Tassa, “Mujoco: A physics engine for model-
based control,” IEEE, pp. 5026–5033, 2012.

[11] M. Körber, J. Lange, S. Rediske, S. Steinmann, and R. Glück, “Com-
paring popular simulation environments in the scope of robotics and
reinforcement learning,” 2021.

[12] UniTree. (2024) Go1. Accessed: 18.01.2024. [Online]. Available:
https://m.unitree.com/go1/

[13] G. Feng, H. Zhang, Z. Li, X. B. Peng, B. Basireddy, L. Yue, Z. Song,
L. Yang, Y. Liu, K. Sreenath, and S. Levine, “Genloco: Generalized
locomotion controllers for quadrupedal robots,” 2022.

[14] J. Schulman, P. Moritz, S. Levine, M. Jordan, and P. Abbeel, “High-
dimensional continuous control using generalized advantage estimation,”
2018.

[15] G. B. Margolis and P. Agrawal, “Walk these ways: Tuning robot control
for generalization with multiplicity of behavior,” Conference on Robot
Learning, 2022.

[16] J. Shlens, “Notes on kullback-leibler divergence and likelihood,” 2014.
[17] I. M. A. Nahrendra, B. Yu, and H. Myung, “Dreamwaq: Learning

robust quadrupedal locomotion with implicit terrain imagination via deep
reinforcement learning,” 2023.

[18] S. H. Jeon, S. Heim, C. Khazoom, and S. Kim, “Benchmarking
potential based rewards for learning humanoid locomotion,” in
2023 IEEE International Conference on Robotics and Automation
(ICRA). IEEE, May 2023. [Online]. Available: http://dx.doi.org/10.
1109/ICRA48891.2023.10160885

[19] Y. Kim, H. Oh, J. Lee, J. Choi, G. Ji, M. Jung, D. Youm, and J. Hwangbo,
“Not only rewards but also constraints: Applications on legged robot
locomotion,” 2024.

[20] N. Rudin, D. Hoeller, P. Reist, and M. Hutter, “Learning to walk in
minutes using massively parallel deep reinforcement learning,” 2022.

[21] J. Lee, J. Hwangbo, L. Wellhausen, V. Koltun, and M. Hutter,
“Learning quadrupedal locomotion over challenging terrain,” Science
Robotics, vol. 5, no. 47, Oct. 2020. [Online]. Available: http:
//dx.doi.org/10.1126/scirobotics.abc5986

[22] G. Deepmind, “Mujoco tutorial,” 2023, accessed on
21.01.2024. [Online]. Available: https://colab.research.google.com/
github/google-deepmind/mujoco/blob/main/mjx/tutorial.ipynb

[23] L. Engstrom, A. Ilyas, S. Santurkar, D. Tsipras, F. Janoos, L. Rudolph,
and A. Madry, “Implementation matters in deep policy gradients: A case
study on ppo and trpo,” arXiv preprint arXiv:2005.12729, 2020.

[24] S. H. Jeon, S. Heim, C. Khazoom, and S. Kim, “Benchmarking
potential based rewards for learning humanoid locomotion,” in
2023 IEEE International Conference on Robotics and Automation
(ICRA). IEEE, May 2023. [Online]. Available: http://dx.doi.org/10.
1109/ICRA48891.2023.10160885

[25] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. P. Lillicrap, T. Harley,
D. Silver, and K. Kavukcuoglu, “Asynchronous methods for deep
reinforcement learning,” 2016.

https://www.davidsilver.uk/teaching/
https://www.davidsilver.uk/teaching/
https://proceedings.neurips.cc/paper_files/paper/2001/file/a38b16173474ba8b1a95bcbc30d3b8a5-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2001/file/a38b16173474ba8b1a95bcbc30d3b8a5-Paper.pdf
https://m.unitree.com/go1/
http://dx.doi.org/10.1109/ICRA48891.2023.10160885
http://dx.doi.org/10.1109/ICRA48891.2023.10160885
http://dx.doi.org/10.1126/scirobotics.abc5986
http://dx.doi.org/10.1126/scirobotics.abc5986
https://colab.research.google.com/github/google-deepmind/mujoco/blob/main/mjx/tutorial.ipynb
https://colab.research.google.com/github/google-deepmind/mujoco/blob/main/mjx/tutorial.ipynb
http://dx.doi.org/10.1109/ICRA48891.2023.10160885
http://dx.doi.org/10.1109/ICRA48891.2023.10160885

VI. APPENDIX

TABLE II
JOINT LIMITS OF ABDUCTION, HIP, AND KNEE

Joint Range of Motion
Hip Abduction [-0.3, 0.3]
Hip Extension [-0.686,1.8]

Knee [-2.0,-0.8]

TABLE III
DREAMWAQ WITH ADJUSTED WEIGHTS

Reward Equation (ri) Weight (wi)

Lin. velocity tracking e−4(vcmd−Vay) 1.5
Ang. velocity tracking e−4(wond−wyaw) 0.5

Linear velocity (z) v2zo -2.0
Angular velocity (xy) ωz

xu -0.05
Orientation −θ̇2 -0.2

Joint accelerations −2.5× 10−7 −2.5e− 7

Joint power ∥τ∥
∥∥∥θ̇∥∥∥ −2.5e− 5

Body height (hdes − h)2 -1.0
Foot clearance (pezk − Pfz,k)

2Vf,xy,k -10.0
Action rate (at − at−1)

2 -0.01
Smoothness (at − 2at−1 + at−2)

2 -0.01
Power distribution var(T0)2 −1e− 7

TABLE IV
MUJOCO TUTORIAL INSPIRED REWARDS

Reward Equation (ri) Weight (wi)

Lin. velocity tracking e−4(vcmd−Vay) 30
Ang. velocity tracking e−4(wond−wyaw) 5.0

Action rate (at − at−1)
2 -0.01

Termination penalty


1, 0.5 < z < 0.2

1, |ϕ|/|ψ|/|θ| > π
3

1, |y| > 0.3

1, x < −0.3

-20

Linear velocity (z) v2zo -2.0
Feet air time

∑
tfeet in air 0.2

Torque reward
√∑N

i=1 τ
2
i +

∑N
i=1 |τi| −2 · 10−4

Stand still (qt − qinit)
2 , xcmd < 0.1m

s
-0.5

Angular velocity (xy) ω2
x + ω2

y -0.05
Foot slip

∑feet higher(poffset + vi)
2 −0.1

Orientation θ2 + ψ2 + ϕ2 -50.0
On track reward x · e−||y−ydes|| 10.0

Fig. 8. Default Rewards

Fig. 9. Mujoco Rewards

Fig. 10. DreamWaQ Rewards

Fig. 11. Actor loss comparison LSTM and MLP

Fig. 12. Value loss comparison LSTM and MLP

Fig. 13. Compared rewards - 20 batches rising number of time steps

Fig. 14. Mujoco environment with stairs

Fig. 15. Mujoco environment with stl objects

	Introduction
	Related Work
	Proximal Policy Optimization
	Prioritized Experience Replay
	Long Short-Term Memory

	Method
	Environment
	Agent
	Reward

	Evaluation
	Actor-Critic Implementation Comparisons
	Comparing Neural Network Implementations
	Evaluating the reward functions
	Batch fitting

	Discussion
	References
	Appendix

